解题思路:由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.
∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,
∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;
当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误,③正确;
当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.
故答案为:①③④.
点评:
本题考点: 棱柱的结构特征.
考点点评: 本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,平面与平面之间的位置关系,考查空间想象能力和思维能力,是基础题.