∵∠ABC=80,∠ACB=60
∴∠A=180-∠ABC-∠ACB=180-80-60=40
∵BO平分∠ABC,CO平分∠ACB
∴∠ABO=∠CBO=∠ABC/2=40,∠ACO=∠BCO=∠ACB/2=30
∴∠BOC=180-(∠CBO+∠BCO)=180-(40+30)=110°
∵∠ABC=70,∠ACB=50
∴∠A=180-∠ABC-∠ACB=180-70-50=60
∵BO平分∠ABC,CO平分∠ACB
∴∠ABO=∠CBO=∠ABC/2=35,∠ACO=∠BCO=∠ACB/2=25
∴∠BOC=180-(∠CBO+∠BCO)=180-(35+25)=120°
3、∠BOC=90+∠A,对任意三角形都成立
证明:
∵BO平分∠ABC,CO平分∠ACB
∴∠ABO=∠CBO=∠ABC/2,∠ACO=∠BCO=∠ACB/2
∴∠BOC=180-(∠CBO+∠BCO)
=180-(∠ABC+∠ACB)/2
=180-(180-∠A)/2
=90+∠A/2