化简(√2)cosα-(√2)sinα 和 sinα+cosα
(√2)cosα-(√2)sinα =2[(√2/2)cosα-(√2/2)sinα]=2[cosαcos(π/4)-sinαsin(π/4)]=2cos(α+π/4)
sinα+cosα=(√2)[sinαcos(π/4)+cosαsin(π/4)]=(√2)sin(α+π/4)
化简(√2)cosα-(√2)sinα 和 sinα+cosα
(√2)cosα-(√2)sinα =2[(√2/2)cosα-(√2/2)sinα]=2[cosαcos(π/4)-sinαsin(π/4)]=2cos(α+π/4)
sinα+cosα=(√2)[sinαcos(π/4)+cosαsin(π/4)]=(√2)sin(α+π/4)