f(x)是增函数
a^x-b^x>0即a^x>b^x即(a/b)^x>1
∵a>1>b>0,则a/b>1
∴x>0
设任意x1,x2且01
lg[(a^x1 - b^x1)/(a^x2 - b^x2)]>0即f(x2)-f(x1)>0
∴f(x2)>f(x1)
故f(x)是增函数
f(x)是增函数
a^x-b^x>0即a^x>b^x即(a/b)^x>1
∵a>1>b>0,则a/b>1
∴x>0
设任意x1,x2且01
lg[(a^x1 - b^x1)/(a^x2 - b^x2)]>0即f(x2)-f(x1)>0
∴f(x2)>f(x1)
故f(x)是增函数