两个子空间的和是直和等价于二者的交只有零向量.
核像是直和等价于: 若Y满足AY = 0, 同时存在X使Y = AX, 则有Y = 0. 等价于: 若A²X = 0, 则AX = 0.
由于AX = 0的解总是A²X = 0的解, 上述条件进一步等价于二者同解, 等价于r(A) = r(A²).
学了Jordan标准型就会知道, 这一条件等价于0特征值的Jordan块都是1阶的.
或者说0特征值的几何重数等于代数重数.
作为特例, 可对角化的矩阵的所有特征值的几何重数都等于代数重数, 因此核和像是直和.
直接证明也不难, 因为对角矩阵显然满足r(A) = r(A²), 而相似变换不改变秩.
作为特例中的特例, 实对称阵是可对角化的, 结论同样成立.
补一个证明.
命题: A为n阶方阵, 则其0特征值的几何重数等于代数重数的充要条件为r(A) = r(A²).
证明: ∵A²的特征值对应为A的特征值的平方, ∴A²和A的0特征值的代数重数相等.
∵AX = 0的解总是A²X = 0的解,
∴0对A的几何重数 ≤ 0对A²的几何重数 ≤ 0对A²的代数重数 = 0对A的代数重数.
则若0对A的几何重数 = 0对A的代数重数, 有0对A的几何重数 = 0对A²的几何重数, 可得r(A) = r(A²).
而若r(A) = r(A²), 全空间等于A的核和像的直和, 且二者均为A的不变子空间.
A的特征多项式等于在二者限制的特征多项式的乘积.
但∵A在像空间上的限制可逆, 无0特征值. ∴0对A的的代数重数 ≤ 核的维数 = 0对A的几何重数.
又0对A的几何重数 ≤ 0对A的代数重数. 故二者相等.