已知公差数列大于零的等差数列{an}的前n项和为Sn,且满足a3*a4=117,a2+a5=22

1个回答

  • (1)∵d>0,且a2+a5=22

    ∴a3+a4=22

    又∵a3*a4=117

    解得a3=9,a4=13

    d=a4-a3=4

    ∵a3=a1+2d

    ∴a1=1

    ∴an=a1+(n-1)d=1+4(n-1)=4n-3 Sn=a1+[n(n-1)*d]/2=n(2n-1)

    (2)若{bn}为等差数列,且bn=Sn/(n + C)

    ∵{bn}为等差数列,则 b(n) =n(2n-1)/(n + C),

    故 b(1) =1*(2*1-1)/(1 + C) =1/(1 + C) ..①

    b(2) =2*(2*2-1)/(2 + C) =6/(2 + C).②

    b(3) =3*(2*3-1)/(3 + C) =15/(3 + C) .③

    根据等差数列性质:

    b(2)-b(1) =b(3) -b(2) 即2b(2)=b(1) +b(3)

    ①、②、③代入上式得

    12/(2 + C) =1/(1 + C) =15/(3 + C)

    整理后得:4C^2+2C=0

    解得 C=0 (舍去)

    C=-1/2 (唯一解)

    期待您的采纳