见解析 (1)证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°.OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE∴∠MEA=∠AFO,∴Rt△BOE≌ Rt△AOF ∴OE=OF(2)OE=OF成立证明:∵四边形ABC...
如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交B
1个回答
相关问题
-
如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交B
-
如图1-3-18,已知正方形 ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB.过A作AM⊥BE,垂足为M
-
正方形abcd的对角线ac、bd相交于点o,e是ac上的一点,连接eb,过点a作am⊥be,垂足m,am交bd于点f
-
命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于
-
(1997•河北)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足
-
如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
-
初二几何难题,..如图所示,已知正方形ABCD的对角线AC,BD相交于O点,E是AC上的点,过A作AG⊥EB,垂足为G,
-
如图:四边形ABCD中,对角线AC、BD相交于点M,且AC⊥AB,BD⊥CD,过点A作AE⊥BC,垂足为E,交BD于点F
-
如图:四边形ABCD中,对角线AC、BD相交于点M,且AC⊥AB,BD⊥CD,过点A作AE⊥BC,垂足为E,交BD于点F
-
如图:四边形ABCD中,对角线AC、BD相交于点M,且AC⊥AB,BD⊥CD,过点A作AE⊥BC,垂足为E,交BD于点F