sin2a=2sinacosa=4/5 => sinacosa=2/5
tan^2a+cot^2a
=(sin^4a+cos^4a)/(sin^2acos^2a)
=[(sin^2a+cos^2a)^2-2sin^2acos^2a]/(sin^2acos^2a)
=[1-2*(2/5)^2]/(2/5)^2
=17/4
sin2a=2sinacosa=4/5 => sinacosa=2/5
tan^2a+cot^2a
=(sin^4a+cos^4a)/(sin^2acos^2a)
=[(sin^2a+cos^2a)^2-2sin^2acos^2a]/(sin^2acos^2a)
=[1-2*(2/5)^2]/(2/5)^2
=17/4