证明cos(pai/7)+cos(pai*3/7)+cos(pai*5/7)=0.5

1个回答

  • (方法一)

    cos(π/7)+cos(3π/7)+cos(5π/7)

    =2sin(π/7)(cos(π/7)+cos(3π/7)+cos(5π/7))/2sin(π/7)

    =(sin(2π/7)+sin(4π/7)-sin(2π/7)+sin(6π/7)-sin(4π/7))/2sin(

    π/7)

    =sin(6π/7)/2sin(π/7)

    =1/2

    类似地可以证明另一个式子

    (方法二)

    设z=cos(π/(2n+1))+isin(π/(2n+1))

    则 z^(2n+1)=cosπ+isinπ=-1(棣莫佛公式)

    则z+z^3+z^5+...+z^(2n-1)=z(1-Z^2n)/(1-z^2)

    =(z+1)/(1-z^2)=1/(z+1)

    将z=cos(π/(2n+1))+isin(π/(2n+1))代入得:

    1/(z+1)=1/(1+cos(π/(2n+1))+isin(π/(2n+1)))

    =(1+cos(π/(2n+1))-isin(π/(2n+1))/(2+2cos(π/(2n+1))

    =1/2-isin(π/(2n+1))/(2+2cos(π/(2n+1))

    得用复数相等的定义:

    可得:cos[pai/(2n+1)]+cos[pai*3/(2n+1)]+.

    +cos[pai*(2n-1)/*(2n+1)]=0.5

    将n=3代入即可得到

    cos(pai/7)+cos(pai*3/7)+cos(pai*5/7)=0.5