(1)△=(-2)2-4×6×1=4-24=-20<0,
则抛物线与x轴没有交点;
(2)△=142+4×15×8=196+480=676>0,
则令y=0,则-15x2+14x+8=0,
解得:x=
−14±
676
−30=[−14±26/−30],
则x1=[4/3],x2=-[2/5].
则与x轴的交点坐标是([4/3],0)和(-[2/5],0);
(3)△=(-4)2-4×4×1=0,
则与x轴只有一个交点.
令y=0,则x2-4x+4=0,
解得:x=2.
则与x轴的交点是(2,0).