解题思路:(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.
(2)先证明△BDE≌△DCF(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.
证明:(1)过点D作DF⊥AC于F;
∵AB为⊙D的切线,
∴∠B=90°
∴AB⊥BC
∵AD平分∠BAC,DF⊥AC
∴BD=DF
∴AC与⊙D相切
;
(2)在△BDE和△DCF中;
∵BD=DF,DE=DC,
∴Rt△BDE≌Rt△DCF(HL),
∴EB=FC.
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC,
∴AC=5+3=8.
点评:
本题考点: 切线的判定.
考点点评: 本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.