积分第一中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a) 推广:若f与g都在[a,b]上连续,且
积分中值定理证明f(x)在[-1,1]上连续,且满足[0,1]上定积分f(x)x^n 等于1,[0,1]上定积分f(x)
1个回答
相关问题
-
设f(x)在[0,1]上连续,且x*f(x)在0到1上的定积分等于f(x)在0到1上的定积分.证明存在y属于0到1使
-
设f(x)在【a,b]上连续且f(x)>0,F(x)=0到xf(t)的定积分+b到x1/f(t)的定积分,证F'(X)>
-
求设f'(x)在[0,a]上连续.f(0)=0,证明|定积分f(x)d(x)
-
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
-
微积分不等式证明设f(x)在[0,1]上连续,且∫f(x)dx=0,∫xf(x)dx=1(两个积分都是在0-1上的积分)
-
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间
-
1.已知f(x)为sint/t在1~x^2上的定积分,求xf(x)在0~1上的定积分.
-
用分部积分法证明:若F(X)连续,则【定积分[定积分F(X)dx,积分区间0到t]积分区间0到X】dt=[定积分F(t)
-
设f(x)在[0,1]上连续,证明在该区间上f^2(x)的积分>=(f(x))的积分的平方
-
函数f(x)在【0,1】上连续可微,证明:lim n->无穷 n积分符号(0——1) x^n f(x)dx=f(1)