sin2x*cosπ/3+sin2x*cosπ/3 为什么等于sin2x
1个回答
sin2x*cosπ/3+sin2x*cosπ/3=2*(sin2x*cosπ/3)
因为cosπ/3=1/2
所以sin2x*cosπ/3+sin2x*cosπ/3=sin2x
相关问题
若sin(x-π)=2cos(2π-x),求(sin(π-x)+5cos(2π-x))/(3cos(π-x)-sin(-
已知 f(x)= sin(x-3π)•cos(2π-x)•sin(-x+ 3π 2 ) cos(-x-π)•cos( π
已知f(x)=sin(x−3π)•cos(2π−x)•sin(−x+3π2)cos(−x−π)•cos(π2−x)
求函数y=[sin2x+sin(2x+π/3)-cos1/2﹙π-4x﹚]/[cos2x+cos﹙2x+π/3﹚-sin
为什么f(x)=sin(2x- π/3 )+√3 cos(2x- π/3 )=2sin2x
已知函数f(x)= [sin(2π-x)sin(π+x)cos(-x-π)] /[2cos(π-x)sin(3π-x)]
f(x)sinx·sin(π-x)+√3sin(π/2+x)cos(π/2+x)+2cos(π+x)cos(π-x) 求
为什么cos(2x-π/3)-sin(5π/6) =cos(2x-π/3)?
化简sin(3π-x)cos(x-3/2)cos(4π-x)/tan(x-5π)cos(π/2+x)sin(x-5/2π
已tanx=4/3,求cos(2x-π/3)cos(π/3-x)-sin(2x-π/3)sin(π/3-x)