f(x)-g(x)=kx-(lnx)/x =(kx?-lnx)/x ?(x>0),
令h(x)=kx?-lnx,
当k0)
当x>√[1/(2k)]时2kx?-1>0,
当x0)恒成立
即h(x)>=0恒成立,则须h(x)最小值)(1/2){1-ln[1/(2k)]}>=0,即1-ln[1/(2k)]>=0,ln[1/(2k)]
f(x)-g(x)=kx-(lnx)/x =(kx?-lnx)/x ?(x>0),
令h(x)=kx?-lnx,
当k0)
当x>√[1/(2k)]时2kx?-1>0,
当x0)恒成立
即h(x)>=0恒成立,则须h(x)最小值)(1/2){1-ln[1/(2k)]}>=0,即1-ln[1/(2k)]>=0,ln[1/(2k)]