an+2Sn*S(n-1)=0
Sn-S(n-1)+2Sn*S(n-1)=0
S(n-1)-Sn=2Sn*S(n-1)
两边除以Sn*S(n-1)
S(n-1)/Sn*S(n-1)-Sn/Sn*S(n-1)=2
1/Sn-1/S(n-1)=2
即相减是个常数
所以1/Sn是等差数列
公差d=2
S1=a1=1/2
所以1/Sn=1/S1+d(n-1)=2n
Sn=1/(2n)
所以an=Sn-S(n-1)=1/(2n)-1/2(n-1)
即an=-1/(n²-n)
an+2Sn*S(n-1)=0
Sn-S(n-1)+2Sn*S(n-1)=0
S(n-1)-Sn=2Sn*S(n-1)
两边除以Sn*S(n-1)
S(n-1)/Sn*S(n-1)-Sn/Sn*S(n-1)=2
1/Sn-1/S(n-1)=2
即相减是个常数
所以1/Sn是等差数列
公差d=2
S1=a1=1/2
所以1/Sn=1/S1+d(n-1)=2n
Sn=1/(2n)
所以an=Sn-S(n-1)=1/(2n)-1/2(n-1)
即an=-1/(n²-n)