解题思路:(1)结论仍然成立.延长CB到G,使BG=FD,根据已知条件容易证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=[1/2]∠BAD,所以得到∠DAF+∠BAE=∠EAF,进一步得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,然后根据全等三角形的性质就可以证明结论成立;
(2)结论不成立,应为EF=BE-DF,如图在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知条件可以证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=[1/2]∠BAD,所以得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,再根据全等三角形的性质就可以证明EF=EG=EB-BG=EB-DF.
(1)延长CB到G,使BG=FD,连接AG,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=[1/2]∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.
(2)结论不成立,应为EF=BE-DF,
证明:在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF=[1/2]∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.
∴EG=EF
∵EG=BE-BG
∴EF=BE-FD.
点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 此题是开放性试题,首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.