边长为整数且各边长不相等,周长为24的三角形有多少个

5个回答

  • 设三角形三边分别为a、b、c,且a<b<c

    因为a+b+c=24,c<a+b,故:2c<24=a+b+c<3c,故:8<c<12

    又:c为整数

    故:c=9或10或11

    (1)当c=9时,a+b=15,因为a<b<c,故:a+b=15<2b

    故:7.5<b<9,因为b为整数,故:b=8

    故:这样的三角形只有一组:9、8、7

    (2)当c=10时,a+b=14,因为a<b<c,故:a+b=14<2b

    故:7<b<10,因为b为整数,故:b=8或9

    故:这样的三角形有两组:10、8、6;10、9、5

    (3)当c=11时,a+b=13,因为a<b<c,故:a+b=13<2b

    故:6.5<b<11,因为b为整数,故:b=7或8或9或10

    故:这样的三角形有四组:11、10、3;11、9、4;11、8、5;11、7、6

    综合以上,边长为整数且各边长不相等,周长为24的三角形有7个

    电脑不懂,我刚刚学习重装系统.