已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)
证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.
证明方法一:∵AF∶BE=x∶2x=1∶2, AE∶BC=2x∶4x=1∶2
∴AF∶BE=AE∶BC
又∵∠A=∠B=90°
∴△AEF∽△BCE
∴∠2=∠3
∵∠1+∠3=90°
∴∠1+∠2=90°
∴∠CEF=90°,即CE⊥EF
证明方法二:连接FC,由勾股定理得
EF²=x²+(2x)²=5x²
EC²=(2x)²+(4x)²=20x²
CF²=(3x)²+(4x)²=25x²
∵5x²+20x²=25x²
∴EF²+EC²=CF²
∴∠CEF=90°,即CE⊥EF