已知数列{a n }满足: 1 a 1 + 1 a 2 + 1 a 3 +…+ 1 a n =n 2 (n≥1,n∈N

1个回答

  • (1)

    1

    a 1 +

    1

    a 2 +

    1

    a 3 +…+

    1

    a 2011 =2011 2

    1

    a 1 +

    1

    a 2 +

    1

    a 3 +…+

    1

    a 2010 =2010 2
    两式相减得

    1

    a 2011 =2011 2-2010 2=4021⇒a 2011=

    1

    4021

    (2)

    1

    a 1 +

    1

    a 2 +

    1

    a 3 +…+

    1

    a n =n 2

    1

    a 1 +

    1

    a 2 +

    1

    a 3 +…+

    1

    a n+1 =(n+1) 2

    两式相减得

    1

    a n =n 2-(n-1) 2=2n-1⇒ a n =

    1

    2n-1 (n≥2)

    当n=1时,a 1=1也满足上式∴ a n =

    1

    2n-1 (n≥1)

    b n=a na n+1=

    1

    (2n-1)(2n+1) =

    1

    2 (

    1

    2n-1 -

    1

    2n+1 )

    S n=

    1

    2 [(1-

    1

    3 )+(

    1

    3 -

    1

    5 )+…+(

    1

    2n-1 -

    1

    2n+1 )]=

    1

    2 (1-

    1

    2n+1 )

    存在正整数b,使得S n>λ-

    1

    2 ,即S n的最大值大于λ-

    1

    2

    而S n=

    1

    2 (1-

    1

    2n+1 )<

    1

    2

    1

    2 >λ-

    1

    2 ,即λ<1