解题思路:分类讨论:①当二次项系数m2-3m+2≠0时,通过对等式左边进行因式分解,即利用因式分解法求得该方程的解,根据限制性条件“关于x的方程(m2-3m+2)x2+(1-2m)x-m(m+1)=0的根是整数”来求m的值;
②当二次项系数m2-3m+2=0时,通过该方程求得m的值,将其代入原方程并求得相应的x值,如果x的值是整数的m值就是符合题意的.
①当m2-3m+2≠0时,即m≠1和m≠2时,
由原方程,得
[(m-1)x+m][(m-2)x-(m+1)]=0
解得,
x=-1-[1/m−1] 或 x=1+[3/m−2],
∵关于x的方程(m2-3m+2)x2+(1-2m)x-m(m+1)=0的根是整数,
∴m=0.5,m=1.5,m=1.25;
②当m2-3m+2=0时,
m=1,m=2,
分别可得x=0,x=2,
因此m=1,m=2也可以;
综上所述,满足条件的m值共有5个.
故选B.
点评:
本题考点: 一元二次方程的整数根与有理根.
考点点评: 本题考查了一元二次方程的整数根与有理根.解得此题时采用了“分类讨论”的数学思想,以防漏解.