设A﹙x1,y1﹚,B﹙x2,y2﹚,C﹙X3,Y3﹚,G﹙x0,y0﹚,E﹙x4.y4﹚
G是⊿ABC的重心.则AE=EB,CG=2GE
从AE=EB
﹛x4-x1,y4-y1﹜=﹛x2-x4,y2-y4﹜
x4-x1=x2-x4, y4-y1=y2-y4
x4=﹙x1+x2﹚/2,y4=﹙y1+y2﹚/2
从CG=2GE
﹛x0-x3.y0-y3﹜=2﹛x4-x0.y4-y0﹚=﹛2x4-2x0,2y4-2y0﹜
x0-x3=2x4-2x0=x1+x2-2x0得到x0=﹙x1+x2+x3﹚/3
同理.y0-y3=2y4-2y0=y1+y2-2y0,得到 y0=﹙y1+y2+y3﹚/3