第一小题用累加法
a(n+1)-a(n)=2^n
a(n)-a(n-1)=2^(n-1)
a(n-1)-a(n-2)=2^(n-2)
……………………….
a(2)-a(1)=2
累加
a(n+1)-a(1)=2^(n+1)-2
a(n+1)=2^(n+1)-1
所以
a(n)=2^n-1,n>=1
第二小题用错位相减法
b(n)=n*a(n)=n(2^n-1)
T(n)=2+2*2^2+3*2^3+4*2^4+……+n*2^n-(1+2+3+…+n)…………………①
2T(n)=2^2+2*2^3+3*2^4+4*2^5+……+n*2^(n+1)-2(1+2+4+…+n) ………②
②-①得
T(n)=n*2^(n+1)-(2+2^2+2^3+2^4+……+2^n)-(1+2+3+…+n)
T(n)=(n-1)*2^(n+1)+2-n(n+1)/2,n>=1
解毕