a^2-3a+1=0
a=0代入,1=0,不成立
所以a不等于0
两边除以a
a-3+1/a=0
a+1/a=3
平方
a^2+2*a*1/a+1/a^2=9
a^2+2+1/a^2=9
a^2+1/a^2=7
a^3+1/a^3
=(a+1/a)(a^2-1+1/a^3)
=3*(7-1)
=18
a^3/(a^6+1)
上下除以a^3
=1/(a^3+1/a^3)
=1/18
a^2-3a+1=0
a=0代入,1=0,不成立
所以a不等于0
两边除以a
a-3+1/a=0
a+1/a=3
平方
a^2+2*a*1/a+1/a^2=9
a^2+2+1/a^2=9
a^2+1/a^2=7
a^3+1/a^3
=(a+1/a)(a^2-1+1/a^3)
=3*(7-1)
=18
a^3/(a^6+1)
上下除以a^3
=1/(a^3+1/a^3)
=1/18