解题思路:(1)连接OE,证OE⊥BC即可.因为AD⊥BC,所以转证OE∥AD.由AE平分∠BAD,OA=OE易得此结论.
(2)∠EFG=∠GAE=∠EAO=∠AEO.根据已知条件易得∠B=30°,∠EOB=60°.从而求解.
(1)证明:连接OE.
∵AB=AC且D是BC中点,
∴AD⊥BC.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
∵OA=OE,
∴∠OAE=∠OEA,
则∠OEA=∠DAE,
∴OE∥AD,
∴OE⊥BC,
∴BC是⊙O的切线.
(2)∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,AD⊥BC,EO∥AD,
∴∠BAD=∠EOB=60°且AE平分∠BAD,
∴∠EAO=∠EAG=30°
又∵∠EFG与∠GAE都对应弧GE
∴∠EFG=∠GAE=30°(同弧所对的圆周角相等)
∴∠EFG=30°.
点评:
本题考点: 切线的判定.
考点点评: 此题考查了切线的判定、等腰三角形性质等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.