(1)由(3-m)S n+2ma n=m+3,得(3-m)S n+1+2ma n+1=m+3,
两式相减,得(3+m)a n+1=2ma n,(m≠-3)
∴
a n+1
a n =
2m
m+3 ,
∴{a n}是等比数列.
(2)由 b 1 = a 1 =1,q=f(m)=
2m
m+3 ,n∈N且n≥2时,
b n =
3
2 f( b n-1 )=
3
2 •
2 b n-1
b n-1 +3 , 得
b n b n-1 +3 b n =3 b n-1 ⇒
1
b n -
1
b n-1 =
1
3 .
∴{
1
b n }是1为首项
1
3 为公差的等差数列,
∴
1
b n =1+
n-1
3 =
n+2
3 ,
故有 b n =
3
n+2 .