设数列{a n }前n的项和为 S n ,且(3-m)S n +2ma n =m+3(n∈N*).其中m为常数

1个回答

  • (1)由(3-m)S n+2ma n=m+3,得(3-m)S n+1+2ma n+1=m+3,

    两式相减,得(3+m)a n+1=2ma n,(m≠-3)

    a n+1

    a n =

    2m

    m+3 ,

    ∴{a n}是等比数列.

    (2)由 b 1 = a 1 =1,q=f(m)=

    2m

    m+3 ,n∈N且n≥2时,

    b n =

    3

    2 f( b n-1 )=

    3

    2 •

    2 b n-1

    b n-1 +3 , 得

    b n b n-1 +3 b n =3 b n-1 ⇒

    1

    b n -

    1

    b n-1 =

    1

    3 .

    ∴{

    1

    b n }是1为首项

    1

    3 为公差的等差数列,

    1

    b n =1+

    n-1

    3 =

    n+2

    3 ,

    故有 b n =

    3

    n+2 .