(1)
∵∠C=90°,AD=5,CD=3∴在Rt△ACD中AC=4(勾2,股4,弦5)∵BC=CD+BD=3+6=8∴在Rt△ABCAB²=AC²+BC²=4²+8²=80AB=4√5∴sin∠A=BC/AB=8/4√5=2√5/5
(2)
∵CD⊥BC,∴由勾股定理,有:BC=√(BD^2-CD^2)=√(25-9)=4.∴tan∠CBD=CD/BC=3/4.
(1)
∵∠C=90°,AD=5,CD=3∴在Rt△ACD中AC=4(勾2,股4,弦5)∵BC=CD+BD=3+6=8∴在Rt△ABCAB²=AC²+BC²=4²+8²=80AB=4√5∴sin∠A=BC/AB=8/4√5=2√5/5
(2)
∵CD⊥BC,∴由勾股定理,有:BC=√(BD^2-CD^2)=√(25-9)=4.∴tan∠CBD=CD/BC=3/4.