(1)二次函数f(x)=mx^2+nx+t的图像过原点,即f(0)=0,则 t=0,
由f'(x)=2mx + n,f'(0)=0,f'(-1)=-2,知 n = 0 ;-2 = -2m + n,即 m = 1
由f(1)=g(1),知 m+n+t = b,即 b = m=1
又g'(x) = a/x + b,f'(1)=g'(1),则 2m + n = a+b,即 a = 1
函数 f(x)= x^2,g(x)= lnx + x
(2)求F(x)=f(x)-g(x)的极小值
F(x)= x^2 - lnx - x,F'(x)= 2x - (1/x) -1 = (x-1)(2x+1)/x
令F'(x)=0 ,得 x = 1,x = - 1/2(舍去),
当00,所以F(1)= 0是极小值