∵a=b-1
∴a-b=-1
(a-b)^2n - 2(b-a)^(2n-1)- 2/3 (b-a)^2n - 1/2(a-b)^(2n-1)
=(a-b)^2n+2(a-b)^(2n-1)-2/3(a-b)^2n-1/2(a-b)^(2n-1)
=1/3(a-b)^2n+3/2(a-b)^(2n+1)
=1/3(-1)^2n+3/2(-1)^(2n+1)
=1/3-3/2
=2/6-9/6
=-7/6
∵a=b-1
∴a-b=-1
(a-b)^2n - 2(b-a)^(2n-1)- 2/3 (b-a)^2n - 1/2(a-b)^(2n-1)
=(a-b)^2n+2(a-b)^(2n-1)-2/3(a-b)^2n-1/2(a-b)^(2n-1)
=1/3(a-b)^2n+3/2(a-b)^(2n+1)
=1/3(-1)^2n+3/2(-1)^(2n+1)
=1/3-3/2
=2/6-9/6
=-7/6