答:
1)
直线y=kx+b经过点P(0,-2)和点M(1,-1),代入得:
0+b=-2
k+b=-1
解得:k=1,b=-2
所以直线为:y=x-2
抛物线y=ax^2经过点M(1,-1),代入得:a=-1
所以:y=-x^2,y=x-2
2)
直线y=x-2与x轴交点A(2,0)
点N(-2,b)在直线上:b=-2-2=-4,点N(-2,-4)
原点(0,0)到直线y=x-2的距离d=|0-0-2|/√(1^2+1^2)=√2
MN=√[(-4+1)^2+(-2-1)^2]=3√2
三角形MON面积=MN*d/2=3√2*√2/2=3
三角形AOQ面积=AO*点Q到x轴距离/2=3
因为:AO=2
所以:点Q到x轴的距离=3
|y|=|-x^2|=3
解得:x=√3或者x=-√3
所以:点Q为(-√3,-3)或者(√3,-3)