(Ⅰ)∵a 3,a 5是方程x 2-14x+45=0的两根,且数列{a n}的公差d>0,
∴a 3=5,a 5=9,公差 d=
a 5 - a 3
5-3 =2.
∴a n=a 5+(n-5)d=2n-1.(3分)
又当n=1时,有 b 1 = S 1 =
1- b 1
2
∴ b 1 =
1
3
当 n≥2时,有 b n = S n - S n-1 =
1
2 ( b n-1 - b n ),∴
b n
b n-1 =
1
3 (n≥2).
∴数列{b n}是首项 b 1 =
1
3 ,公比 q=
1
3 等比数列,
∴ b n = b 1 q n-1 =
1
3 n . (6分)
(Ⅱ)由(Ⅰ)知 c n = a n b n =
2n-1
3 n ,则 T n =
1
3 1 +
3
3 2 +
5
3 3 ++
2n-1
3 n (1)
∴
1
3 T n =
1
3 2 +
3
3 3 +
5
3 4 ++
2n-3
3 n +
2n-1
3 n+1 (2)(10分)
(1)-(2)得:
2
3 T n =
1
3 +
2
3 2 +
2
3 3 ++
2
3 n -
2n-1
3 n+1 =
1
3 +2(
1
3 2 +
1
3 3 ++
1
3 n )-
2n-1
3 n+1
化简得: T n =1-
n+1
3 n (12分)