设:OA=(x,y),则:OA-(2,0)=(x,y)-(2,0)=(x-2,y),即:(x-2)^2+y^2=1
即A点的轨迹是一个圆,设:x=2+cost,y=sint
AB=OB-OA=(x,y)-(1,1)=(x-1,y-1),则:|AB|^2=(x-1)^2+(y-1)^2
=(1+cost)^2+(sint-1)^2=3-2(sint-cost)=3-2sqrt(2)sin(x-π/4)
故|AB|^2的最大值:3+2sqrt(2),即|AB|的最大值:sqrt(2)+1
设:OA=(x,y),则:OA-(2,0)=(x,y)-(2,0)=(x-2,y),即:(x-2)^2+y^2=1
即A点的轨迹是一个圆,设:x=2+cost,y=sint
AB=OB-OA=(x,y)-(1,1)=(x-1,y-1),则:|AB|^2=(x-1)^2+(y-1)^2
=(1+cost)^2+(sint-1)^2=3-2(sint-cost)=3-2sqrt(2)sin(x-π/4)
故|AB|^2的最大值:3+2sqrt(2),即|AB|的最大值:sqrt(2)+1