解题思路:可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),分别求出这些组的最小值,然后求和即可.
可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),
第一组,取a1=0,a2=2,a3=-4,a4=-2 其和最小=-4,
第二组,取a5=0,a6=2,a7=-4,a8=-2 其和最小=-4,
…倒数第2组,取a2001=0,a2002=2,a2003=-4,a2004=-2.其和最小=-4,
最后一组,取a2005=0,a2006=-2.
∴这些数的和最小为501×(-4)+0=-2004,
故答案为-2004.
点评:
本题考点: 函数最值问题;整数问题的综合运用.
考点点评: 本题主要考查函数最值问题和整数问题的综合运用的知识点,解答本题的关键是对这些数进行分组,此题有一定难度.