已知数列{an}满足a1=1/3,a2=7/9,an+2=4/3an+1-1/3an (1)求{an}的通项公式 (2)

3个回答

  • a(n+2)-a(n+1)=(1/3)[a(n+1)-a(n)],

    {a(n+1)-a(n)}是首项为a(2)-a(1)=7/9 - 1/3 = 4/9,公比为(1/3)的等比数列.

    a(n+1)-a(n) = (4/9)(1/3)^(n-1) = 4/3^(n+1),

    a(n+1)3^(n+1) = 3a(n)3^(n) + 4,

    2+a(n+1)3^(n+1) = 3[2 + a(n)3^n]

    {2+a(n)3^(n)}是首项为2+3a(1)=2+1=3,公比为3的等比数列.

    2+a(n)3^n = 3*3^(n-1)=3^n,

    a(n) = 1 - 2/3^n

    na(n) = n - 2n/3^n

    s(n) = 1-2/3 + 2-2*2/3^2 + ... +(n-1)-2(n-1)/3^(n-1) + n-2n/3^n

    =1+2+...+(n-1)+n - 2[1/3 + 2/3^2 + ... + (n-1)/3^(n-1) + n/3^n]

    =n(n+1)/2 - 2t(n).

    t(n) = 1/3 + 2/3^2 + ... + (n-1)/3^(n-1) + n/3^n

    3t(n) = 1 + 2/3 + ... + (n-1)/3^(n-2) + n/3^(n-1)

    2t(n) = 3t(n) - t(n) = 1 + 1/3 + ... + 1/3^(n-2) + 1/3^(n-1) - n/3^n

    =[1-1/3^n]/(1-1/3) - n/3^n

    = (3/2)[1-1/3^n] - n/3^n

    s(n)=n(n+1)/2 - 2t(n)

    =n(n+1)/2 -(3/2)[1-1/3^n] + n/3^n