设|PF1|>|PF2|,则|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.则∠PF1F2是△PF1F2的最小内角为30°,∴|PF2|²=|PF1|²+|F1F2|²-2|PF1|•|F1F2|cos30°,所以(2a)2=(4a)2+(2c)2-2×4a×2c×√3/2
同时除以a²,化简e²-2√3e+3=0;
所以e=√3
希望对你能有所帮助.
设|PF1|>|PF2|,则|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.则∠PF1F2是△PF1F2的最小内角为30°,∴|PF2|²=|PF1|²+|F1F2|²-2|PF1|•|F1F2|cos30°,所以(2a)2=(4a)2+(2c)2-2×4a×2c×√3/2
同时除以a²,化简e²-2√3e+3=0;
所以e=√3
希望对你能有所帮助.