1、ΔBCD是等边三角形。
2、设AH=HC=m,
在RTΔBCH中,
( 6-m)^2+4^2=m^2,12m=52,m=13/3,H(13/3,4),
设直线CF解析式:Y=KX+b,得:
{4=13/3K+b
{0=6K+b
解得:K=-12/5,b=72/5,
∴直线CH:Y=-12/5X+72/5。
⑶设抛物线Y=a(X-6)^2+4,又过D(10,0),
得:0=16a+4,a=-1/4,
∴Y=-1/4(X-6)^2+4,
当X=8时,Y=3,又M(8,3),
∴抛物线过点M。
1、ΔBCD是等边三角形。
2、设AH=HC=m,
在RTΔBCH中,
( 6-m)^2+4^2=m^2,12m=52,m=13/3,H(13/3,4),
设直线CF解析式:Y=KX+b,得:
{4=13/3K+b
{0=6K+b
解得:K=-12/5,b=72/5,
∴直线CH:Y=-12/5X+72/5。
⑶设抛物线Y=a(X-6)^2+4,又过D(10,0),
得:0=16a+4,a=-1/4,
∴Y=-1/4(X-6)^2+4,
当X=8时,Y=3,又M(8,3),
∴抛物线过点M。