解题思路:由题设可得 Sn-1Sn+2Sn+1=0,求得S1,S2,S3的值,猜测Sn =-[n+1/n+2],n∈N+;用数学归纳法证明,检验n=1时,猜想成立;假设SK=-[K+1/K+2],则当n=k+1时,由条件可得,
S
K+1
+
1
S
K+1
=
S
K+1
−
S
K
−2
,解出 SK+1=-[K+2/K+3],故n=k+1时,猜想仍然成立.
由题设得Sn2+2Sn+1-anSn=0,当n≥2(n∈N*)时,an=Sn-Sn-1,
代入上式,得Sn-1Sn+2Sn+1=0.(*)
S1=a1=-[2/3],
∵Sn+[1
Sn=an-2(n≥2,n∈N),令n=2可得
,S2+
1
S2=a2-2=S2-a1-2,
∴
1
S2=
2/3]-2,
∴S2=-[3/4].
同理可求得 S3=-[4/5],S4=-[5/6].
猜想Sn =-[n+1/n+2],n∈N+,下边用数学归纳法证明:
①当n=1时,S1=a1=-[2/3],猜想成立.
②假设当n=k时猜想成立,即SK=-[K+1/K+2],则当n=k+1时,∵Sn+[1
Sn=an-2,∴SK+1+
1
SK+1=ak+1−2,
∴SK+1+
1
SK+1=SK+1−SK−2,∴
1
SK+1=
K+1/K+2]-2=[−K−3/K+2],
∴SK+1=-[K+2/K+3],∴当n=k+1时,猜想仍然成立.
综合①②可得,猜想对任意正整数都成立,即 Sn =-[n+1/n+2],n∈N+成立.
点评:
本题考点: 归纳推理.
考点点评: 本题考查归纳推理,用数学归纳法证明等式,证明当n=k+1时,Sn =-[n+1/n+2],n∈N+,是解题的难点.