已知数列{an}的前n项和为Sn,a1=−23,满足Sn+1Sn+2=an(n≥2),计算S1,S2,S3,S4,并猜想

1个回答

  • 解题思路:由题设可得 Sn-1Sn+2Sn+1=0,求得S1,S2,S3的值,猜测Sn =-[n+1/n+2],n∈N+;用数学归纳法证明,检验n=1时,猜想成立;假设SK=-[K+1/K+2],则当n=k+1时,由条件可得,

    S

    K+1

    +

    1

    S

    K+1

    S

    K+1

    S

    K

    −2

    ,解出 SK+1=-[K+2/K+3],故n=k+1时,猜想仍然成立.

    由题设得Sn2+2Sn+1-anSn=0,当n≥2(n∈N*)时,an=Sn-Sn-1

    代入上式,得Sn-1Sn+2Sn+1=0.(*)

    S1=a1=-[2/3],

    ∵Sn+[1

    Sn=an-2(n≥2,n∈N),令n=2可得

    ,S2+

    1

    S2=a2-2=S2-a1-2,

    1

    S2=

    2/3]-2,

    ∴S2=-[3/4].

    同理可求得 S3=-[4/5],S4=-[5/6].

    猜想Sn =-[n+1/n+2],n∈N+,下边用数学归纳法证明:

    ①当n=1时,S1=a1=-[2/3],猜想成立.

    ②假设当n=k时猜想成立,即SK=-[K+1/K+2],则当n=k+1时,∵Sn+[1

    Sn=an-2,∴SK+1+

    1

    SK+1=ak+1−2,

    ∴SK+1+

    1

    SK+1=SK+1−SK−2,∴

    1

    SK+1=

    K+1/K+2]-2=[−K−3/K+2],

    ∴SK+1=-[K+2/K+3],∴当n=k+1时,猜想仍然成立.

    综合①②可得,猜想对任意正整数都成立,即 Sn =-[n+1/n+2],n∈N+成立.

    点评:

    本题考点: 归纳推理.

    考点点评: 本题考查归纳推理,用数学归纳法证明等式,证明当n=k+1时,Sn =-[n+1/n+2],n∈N+,是解题的难点.