y=m*n=(√3*cosx-sinx)*(2cosx)+1*(a-√3)
=2√3*cos^(2)x-2sinxcosx+a-√3
=√3(2cos^(2)x-1)-2sinxcosx+a
=√3cos2x-sin2x+a
=2cos[2x+(π/6)]+a
X∈(0 ,π/2)时,2x+(π/6) ∈(π/6 ,7π/6),
则cos[2x+(π/6)]∈[-1,1/2],
所以f(x)的最小值为-2+a=-2,∴a=0.
y=m*n=(√3*cosx-sinx)*(2cosx)+1*(a-√3)
=2√3*cos^(2)x-2sinxcosx+a-√3
=√3(2cos^(2)x-1)-2sinxcosx+a
=√3cos2x-sin2x+a
=2cos[2x+(π/6)]+a
X∈(0 ,π/2)时,2x+(π/6) ∈(π/6 ,7π/6),
则cos[2x+(π/6)]∈[-1,1/2],
所以f(x)的最小值为-2+a=-2,∴a=0.