这个是隐函数的问题,就是说没有写成:明显的y和x之间的关系式,比如y=arctan(x).
但是可以用隐函数的求导法则:
①两边同时对x求导,(求导实际上也是一种运算),得到:
dy/dx=1/[1+(x+y)^2] * [1+dy/dx] -------------这里右端后项的[1+dy/dx] 表示d(x+y)/dx;
前项表示arctan对x的导数.
把两边的dy/dx合并,所以:一阶导数 dy/dx=1/(x+y)^2 ⑴
② 上面⑴式两边继续对x求导:
d2y/dx2= -2/(x+y)^3 * (1+dy/dx)
=-2/(x+y)^3 * (1+dy/dx)
=-2/(x+y)^3 * (1+1/(x+y)^2)
=-2[1+(x+y)^2] / (x+y)^5
或者 =-2[1+(x+y)^2] -2 / (x+y)^5 ⑵