(x^2+ax+7+a)/(x+1)≥4,x∈N*,
(x^2+ax+7+a)/(x+1)≥4
[(x+1)²+(a-2)x+6+a]/(x+1)≥4
[(x+1)²+(a-2)(x+1)+8 ]/(x+1)≥4
(x+1)+(a-2)+8 /(x+1)≥4
a≥6-[(x+1)+8 /(x+1)]恒成立
∴a≥﹛6-[(x+1)+8 /(x+1)]﹜max
=6-4√2,当x=2√2-1时取得
因为x∈N*,所以当x=2时,﹛6-[(x+1)+8 /(x+1)]﹜max=1/3
∴a≥1/3
或x^2+ax+7+a≥4x+4,x∈N*,
﹙x+1﹚a≥﹣﹙x²-4x+3﹚,
a≥﹣﹙x²-4x+3﹚/﹙x+1﹚
=﹣[﹙x+1﹚²-6﹙x+1﹚+8]/﹙x+1﹚
=﹣[﹙x+1﹚-6+8/﹙x+1﹚]
∴a≥﹛﹣[﹙x+1﹚-6+8/﹙x+1﹚]﹜max=6-4√2
当x=2√2-1时取得
因为x∈N*,所以当x=2时,﹛6-[(x+1)+8 /(x+1)]﹜max=1/3
∴a≥1/3