已知函数f(x)=(x^2+ax+7a)/(x+1),a∈R,若对于任意的x∈N*,f (x)≥4恒成立,则a的取值范围

3个回答

  • (x^2+ax+7+a)/(x+1)≥4,x∈N*,

    (x^2+ax+7+a)/(x+1)≥4

    [(x+1)²+(a-2)x+6+a]/(x+1)≥4

    [(x+1)²+(a-2)(x+1)+8 ]/(x+1)≥4

    (x+1)+(a-2)+8 /(x+1)≥4

    a≥6-[(x+1)+8 /(x+1)]恒成立

    ∴a≥﹛6-[(x+1)+8 /(x+1)]﹜max

    =6-4√2,当x=2√2-1时取得

    因为x∈N*,所以当x=2时,﹛6-[(x+1)+8 /(x+1)]﹜max=1/3

    ∴a≥1/3

    或x^2+ax+7+a≥4x+4,x∈N*,

    ﹙x+1﹚a≥﹣﹙x²-4x+3﹚,

    a≥﹣﹙x²-4x+3﹚/﹙x+1﹚

    =﹣[﹙x+1﹚²-6﹙x+1﹚+8]/﹙x+1﹚

    =﹣[﹙x+1﹚-6+8/﹙x+1﹚]

    ∴a≥﹛﹣[﹙x+1﹚-6+8/﹙x+1﹚]﹜max=6-4√2

    当x=2√2-1时取得

    因为x∈N*,所以当x=2时,﹛6-[(x+1)+8 /(x+1)]﹜max=1/3

    ∴a≥1/3