因为f(x)=1+log2(x),x∈[1,4],而g(x)=f²(x)+f(x²)中的f(x²)的自变量为x²,即x²∈[1,4],所以x∈[1,2],g(x)=1+2log2(x)+log²2(x)+1+log2(x²)
=1+2log2(x)+log²2(x)+1+2log2(x)
=2+ 4log2(x)+log²2(x)
=[log2(x)+2]²-2 x∈[1,2]
所以当x=1时,最小值g(x)=2
当x=2时,最大值g(x)=7
因为f(x)=1+log2(x),x∈[1,4],而g(x)=f²(x)+f(x²)中的f(x²)的自变量为x²,即x²∈[1,4],所以x∈[1,2],g(x)=1+2log2(x)+log²2(x)+1+log2(x²)
=1+2log2(x)+log²2(x)+1+2log2(x)
=2+ 4log2(x)+log²2(x)
=[log2(x)+2]²-2 x∈[1,2]
所以当x=1时,最小值g(x)=2
当x=2时,最大值g(x)=7