证明:
令F(x)=f(x)+x-1
因为f(x)在[0,1]上连续,在(0,1)可导,
所以F(x)在[0,1]上连续,在(0,1)可导,
又
F(0)=f(0)+0-1=-10
F(x)在[0,1]必有零点 所以存在f(c)+c-1=0即f(c)=1-c
证明:
令F(x)=f(x)+x-1
因为f(x)在[0,1]上连续,在(0,1)可导,
所以F(x)在[0,1]上连续,在(0,1)可导,
又
F(0)=f(0)+0-1=-10
F(x)在[0,1]必有零点 所以存在f(c)+c-1=0即f(c)=1-c