定义如下
设M是n阶实系数对称矩阵, 如果对任何非零向量
X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。
正定矩阵在相合变换下可化为标准型, 即单位矩阵。
所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。
另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′A...
定义如下
设M是n阶实系数对称矩阵, 如果对任何非零向量
X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。
正定矩阵在相合变换下可化为标准型, 即单位矩阵。
所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。
另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′A...