且角BPC=角BAC ,设AB与PC相交与点o
△OPB∽△AOC,OP:OA=OB:OC,OP:OB=OA:OC
△AOP相似△BOC,∠APC=∠ABC,∠BPC=∠BAC ,∠CPA +∠APD =∠ABC+∠ACB
∠APD=∠ACB,∠APC=∠APD
2、∠BAC=∠BPC=∠APD=∠APC=60
在CD上截取AP=PM,连接AM,△APM是等边三角形,∠APB=∠AMC=120
∠PAM=∠BACk=60,∠PAB=∠MAC,△APB≌△AMC,CM=PB
PA+PB=PC
且角BPC=角BAC ,设AB与PC相交与点o
△OPB∽△AOC,OP:OA=OB:OC,OP:OB=OA:OC
△AOP相似△BOC,∠APC=∠ABC,∠BPC=∠BAC ,∠CPA +∠APD =∠ABC+∠ACB
∠APD=∠ACB,∠APC=∠APD
2、∠BAC=∠BPC=∠APD=∠APC=60
在CD上截取AP=PM,连接AM,△APM是等边三角形,∠APB=∠AMC=120
∠PAM=∠BACk=60,∠PAB=∠MAC,△APB≌△AMC,CM=PB
PA+PB=PC