设 Fi(x)=bi0 + bi1x + bi2x^2 + ...+ bi,n-2 x^(n-2),i=1,2,...,n
令n阶矩阵 B=
b10 b11 ...b1,n-2 0
b20 b21 ...b2,n-2 0
......
bn0 bn1 ...bn,n-2 0
A =
1 1 ...1
a1 a2 ...an
a1^2 a2^2 ...an^2
......
a1^n-1 a2^n-1 ...an^n-1
则原行列式的矩阵 = BA等式两边取行列式,原行列式 = |B||A| = 0.