,AB CD EF相交于O,EF⊥AB OG平分∠COF,OH平分∠DOG若∠AOC:∠DOH=8:28,求∠COH的大

1个回答

  • 因为∠AOC:∠DOH=8:28,所以设∠AOC=2x,∠DOH=7x

    设∠DOF=y

    因为OG平分∠COF,所以∠COG=1/2∠COF=1/2(∠COD-∠DOF)=1/2(180-y)

    因为OH平分∠DOG,所以

    ∠DOH=1/2 ∠DOG=1/2(∠COD-∠COG)=1/2(180-(1/2(180-y))=7x

    ∠DOG=2∠DOH=14x

    因为EF⊥AB,∠AOF=90

    ∠AOF=∠AOG+∠GOF=(∠COG-∠AOC)+(∠DOG-∠DOF)

    =(1/2(180-y)-2x)+(14x-y)=90

    从上得(1/2(180-y)-2x)+(14x-y)=90------①

    1/2(180-(1/2(180-y))=7x----------②

    解得x=9

    所以∠DOH=7x=63

    ∠COH=∠COD-∠DOH=180-63=117