解题思路:根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.
证明:∵E是BC的中点,
∴CE=BE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠DCB=∠FBE,
在△CED和△BEF中,
∠DCB=∠FBE
CE=BE
∠CED=∠BEF,
∴△CED≌△BEF(ASA),
∴CD=BF,
∴AB=BF.
点评:
本题考点: 全等三角形的判定与性质;平行四边形的性质.
考点点评: 本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.