先求解y'+ycotx=0的通解
∵y'+ycotx=0 ==>dy/y+cosxdx/sinx=0
==>dy/y+d(sinx)/sinx=0
==>ln│y│+ln│sinx│=ln│C│ (C是积分常数)
==>ysinx=C
∴y'+ycotx=0的通解是y=C/sinx
于是,设y'+ycotx=5e^(cosx)的通解为 y=C(x)/sinx (C(x)表示关于x的函数)
∵y'=[C'(x)sinx-C(x)cosx]/sin²x
代入原方程得[C'(x)sinx-C(x)cosx]/sin²x+C(x)cosx/sin²x=5e^(cosx)
==>C'(x)/sinx=5e^(cosx)
∴C(x)=5∫sinxe^(cosx)dx
=-5∫e^(cosx)d(cosx)
=-5e^(cosx)+C (C是积分常数)
==>y=C(x)/sinx=[-5e^(cosx)+C]/sinx
故y'+ycotx=5e^(cosx)的通解是y=C(x)/sinx=[-5e^(cosx)+C]/sinx (C是积分常数).