要有实数根,那么△≥0
[2(1+a)]²-4(3a²+4ab+4b²+2)≥0
4(a²+2a+1)-12a²-16ab-16b²-8≥0
-8a²-16ab-16b²+8a-4≥0
2a²+4ab+4b²-2a+1≤0
a²+4ab+4b²+a²-2a+1≤0
(a+2b)²+(a-1)²≤0
而(a+2b)²+(a-1)²≥0
∴(a+2b)²+(a-1)²=0
即a+2b=0,a-1=0,得a=1,b=-1/2
要有实数根,那么△≥0
[2(1+a)]²-4(3a²+4ab+4b²+2)≥0
4(a²+2a+1)-12a²-16ab-16b²-8≥0
-8a²-16ab-16b²+8a-4≥0
2a²+4ab+4b²-2a+1≤0
a²+4ab+4b²+a²-2a+1≤0
(a+2b)²+(a-1)²≤0
而(a+2b)²+(a-1)²≥0
∴(a+2b)²+(a-1)²=0
即a+2b=0,a-1=0,得a=1,b=-1/2