1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.

2个回答

  • 1.

    A=arctan(3/5) B=arctan(1/4)

    C=π-A-B=π-arctan(3/5)-archtan(1/4)=135°

    三角形内角正弦之比=他们的对边边长之比.

    3/5>1/4 所以tanA>tanB,由tan函数在(0,π/2)的单调性可知 A>B

    所以sinA>sinB,最短边是b,最长边是c,c=1

    c/sinC = b/sinB

    b=c*sinB/sinC = 0.343

    2.a b c 分别是A B C的对边吗?

    设角BAC=θ

    a/sinA = b/sinB = c/sinC

    所以 4/sinθ=1/sin(π-2θ)

    sinθ=4sin(π-2θ)

    sinθ=4sin(2θ)=8sinθcosθ

    所以sinθ=0 或cosθ=1/8

    所以θ=0(舍去)或θ=82.82°

    角BAD=角DAC=θ/2

    角ADC=180-(角DAC+角ACD)=180-3θ/2

    b/sin∠ADC = AD/sinC

    AD=b*sinθ/sin(180-3θ/2)

    AD=1*sinθ/sin(3θ/2) = 1.2