证明:
设BD交AE于F;作GC⊥AC交AE延长线于G
∵AE⊥BD,∠BAC=90°
∴∠ABD+∠ADB=90°
∠CAG+∠ADB=90°
∴∠ABD=∠CAG
又∵∠ACG=∠BAD=90°
AB=AC
∴△BAD≌△ACG(AAS)
∴∠ADB=∠G,AD=CG
∵AD=CD
∴CD=CG
∵∠DCE=∠GCE=45°,CE=CE
∴△DCE≌△GCE(SAS)
∴∠CDE=∠G
∴∠ADB=∠CDE
证明:
设BD交AE于F;作GC⊥AC交AE延长线于G
∵AE⊥BD,∠BAC=90°
∴∠ABD+∠ADB=90°
∠CAG+∠ADB=90°
∴∠ABD=∠CAG
又∵∠ACG=∠BAD=90°
AB=AC
∴△BAD≌△ACG(AAS)
∴∠ADB=∠G,AD=CG
∵AD=CD
∴CD=CG
∵∠DCE=∠GCE=45°,CE=CE
∴△DCE≌△GCE(SAS)
∴∠CDE=∠G
∴∠ADB=∠CDE